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In this paper, we propose a simple statistical mechanical model to study the conformation transition between
the � helix, � sheet, and random coil in homopolypeptides. In our model, five parameters are introduced to
obtain the partition function. There are two factors for helical propagation and initiation, which are the same as
those used in the Zimm-Bragg model, and three newly introduced parameters for � structures: the strand
propagation factor for residues in � strands and two correction factors for the initiation effect of the � strand
and � sheet. Our model shows that the variation of these parameters may induce conformation transition from
� helix or random coil to � sheet. The sharpness of the transition depends on the initiation factors.
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I. INTRODUCTION

Formation of regular secondary structures in proteins has
attracted great interest in the last few decades �1,2�. Many
well-known diseases, such as Alzheimer’s, Mad Cow, and
Parkinson’s disease, are caused by protein structure transi-
tion. For example, the interconversion between �-helix and
�-sheet conformation of the protein prion is closely related
to Mad Cow disease �3�. However, despite numerous efforts,
the underlying mechanisms of how such a transition happens
are still controversial �1,2�. Many interactions are involved
in the transition process and determine the stability of final
conformations. According to their distinct properties, the in-
teractions can be grouped into two classes: short-range inter-
actions between amino acids which are near neighbors in
sequence; and long-range interactions that involve amino ac-
ids remote in sequence but spatially close �4�.

The �-helix formation involves only short-range interac-
tions, and can be studied under the framework of phase tran-
sition theory �1,2,5,6�. The first such kind of theory for the
helix-coil transition was proposed by Zimm and Bragg �ZB�
in the late 1950s �5�, and then reformulated by Lifson and
Roig in the early 1960s �6�. In the ZB model, there are two
parameters that are essential for helix formation: the propa-
gation parameter s to represent the successive hydrogen
bonding inside an � helix, and the factor � for the initiation
of a helix. Accordingly, the partition function can be con-
structed by enumerating all possible conformations of a
chain. Then its statistical properties, including the helical
content and the average number of � helices, are easily to be
obtained from the partition function.

After the pioneer work of Zimm and Bragg, helix-coil
transition theory has been greatly developed in the past fifty
years �7–11�. In these studies, the parameters in the model
have been carefully compared with experiments �12–14�.
Additional interactions that may affect the stability of the �
helix, such as terminal effects, capping motifs, helix dipoles,
and side chain interactions, were widely studied by many
authors �15–33�. Extensions to different kinds of helices, in-

cluding the � and 310 helix, have also been discussed �34�.
When there are � structures in a polypeptide, the connect-

ing patterns among the � strands can be very complicated
because of the presence of long-range interactions. As a re-
sult, the developing of transition theories of � structures is
still at the very beginning. And most existing works are
limited to the � hairpin or antiparallel � sheet �35–48�. To
our knowledge, no general consideration about the helix-
sheet-coil transition is available, especially for the general
case with parallel � sheets.

In this paper, we seek to develop a simple statistical me-
chanical model for the helix-sheet-coil transition in a generic
homopolypeptide chain. Instead of providing a comprehen-
sive understanding for the secondary structure formation, we
will mainly focus on the role of long-range interactions in
the � structure formation and helix-sheet transition.

The rest of the paper is organized as follows. The basic
model is introduced in Sec. II, with detailed mathematical
treatment of the partition function in Sec. III. Section IV
presents the computational results for the transition from ran-
dom coil and � helix to � sheet. The paper is concluded in
Sec. V.

II. MODEL

For a statistical mechanical model, its central problem is
to calculate the partition function. To this end, we introduce
a systematical way to describe the possible conformations of
a chain, which is done in two steps.

At first, we define the state of each amino acid residue, in
other words, which one is in the � helix and which one is in
the � strand. The definition of a residue in the � helix is
straightforward, i.e., those residues whose NH group is
bonded to the CO group of the fourth preceding residue.
Here we assume that the hydrogen bonding of a residue, if it
occurs in the � helix, is always to the fourth preceding one,
and disregard other helical structures such as the � helix or
310 helix �1,2,34�. To determine whether a residue is in the �
strand is tricky, and depends on the state of its neighboring
residues. Here we adopt a simple classification that a residue
is regarded to be in the � strand, if the torsion angle pairs
�� ,�� of itself and its two neighboring residues all take val-
ues in the upper left quadrant of the Ramachandran plot.
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Now, a chain of n residues can be described by a sequence of
n symbols, each of which has one of three following values:
digit 0 represents a random coil residue, 1 for a residue in the
� helix, and 2 for a residue in the � strand. An example is
shown by the first code in Fig. 1.

Knowing the state of each residue is not sufficient. We
need to know how the � strands connect to each other to
form � sheets. This is done by the second code shown in Fig.
1. We assign a symbol Si

j for the jth strand in the ith � sheet.
Here the number j is assigned not according to the sequence
along the chain, but by the spatial connecting order in the �
sheet. Now, the conformation of a chain can be described by
two sequences of codes as shown in Fig. 1. It is easy to see
that the second code is a consequence of the long-range in-
teractions in the � sheet, which will be essential to helix-
sheet transition.

Now, we introduce the statistical weights for the residues
and � strands according to their codes shown in Table I. The
physical meanings of every terms are given as follows. Then
the relatively occurring probability for a given conformation
is the product of these statistical weights along the chain.

�1� The factor 1 is arbitrarily assigned to random coil
residues because only the relative ratio is effective.

�2� The helical propagation factor s measures the contri-
bution of an �-helical residue to the partition function. It
contains a decrease due to the restriction of torsion angle,
and an increase due to the local hydrogen bonding. The value
of s for a particular amino acid depends on its tendency to
form a helix. In general, if the amino acid has a small side
chain and is easy to form local hydrogen bonds, s will be
slightly larger than unity; otherwise, s is smaller than unity
�12–14�.

�3� The helical initiation factor � represents the decrease
in the helical propagation factor s for the first unit in an �
helix. This is because the formation of the first hydrogen
bond needs extra restriction of torsion angles of residues be-
tween the bonded ones. According to Lifson-Roig model �6�,
this factor measures the boundary effect, and can be applied
to both ends of an � helix. Additional capping parameters
may also be considered �16–20�. However, here we only
introduce the initiation factor at one end, and omit the cap-
ping parameters for simplicity.

�4� The strand propagation factor p measures the contri-
bution of a residue in the � strand to the partition function.
This factor contains a decrease due to the restriction of tor-
sion angle, and an increase due to hydrogen bonding and
hydrophobic effect. These interactions may occur between
residues that are remote along the chain but close in space.
Experimentally, the value of p for a particular amino acid
can be obtained from its relative tendencies to form � sheets
�49–51�.

�5� The strand initiation factor � measures the decrease in
the strand propagation factor p for the first unit in a � strand.
This is because the torsion angles of residues between the �
strands are greatly restricted in order to connect two con-
secutive � strands to form the first pair of hydrogen bonds.
Here, we introduce one initiation factor for each � strand,
and also neglect the capping parameters for simplicity.

�6� The �-sheet initiation factor � measures the decrease
in bonding effect for the first pair of � strands in a � sheet.
Since the residues in the outer strands can only form one
hydrogen bond, rather than two as those in the inner strands.
Similar to the case of helix, one can also introduce an extra
parameter for the last � strand in each � sheet. However, this
will not affect the results and will be omitted here for sim-
plicity.

In summary, we have introduced five tuneable parameters.
The factors s and p measure the interactions on single resi-
due in the � helix and � strand; the factors �, �, and � stand
for boundary effects of the � helix, � strand, and � sheet,
respectively. These effective model parameters are closely
related to the chemical properties of the residues. Even small
changes in their values may cause a large structure transition
from one conformation to the other, just as what have been
discovered in many proteins and biopolymers �1,2,52,53�. In
general, s and p are sightly larger than unity, while �, � and
� are less than unity.

In addition to the above five parameters, we introduce a
parameter 	 to represent the minimum number of coil resi-
dues to separate two consecutive secondary structure ele-
ments.

III. MATHEMATICAL TREATMENT

Based on the previous coding method for the conforma-
tions of a chain, we can construct the partition function of a
homopolypeptide by enumerating all possible ways of ar-
ranging the digits 0,1,2 and symbols Si

j. For each arrange-
ment, its corresponding macroscopic state can be represented
as X= �na ,nb , la , lb ,kb�, where na, nb, la, lb, kb are the number
of � residues, � residues, � helices, � strands, and � sheets,
respectively. The statistical weight of X is given by

Q�X� = snapnb�la�lb�kb. �1�

Let S�X� be the number of conformations with the same
macroscopic state X, and 
 be the set of all permissible
conformations, then the partition function Z is formulated as

Z = �
X�


Q�X�S�X� . �2�

However, the explicit forms of S�X� and 
 are very difficult
to obtain, especially in the presence of � structures. In the

TABLE I. Statistical weights in the model.

Code Weight State

0 1 coil residue

�0�1 �s initiation of an � helix

�1�1 s residue in the � helix

2 p residue in the � sheet

Si
1 �� initiation of a � sheet

Si
j�j�2� � initiation of a � strand

Peptide units: 1 2 3 4 5 6 7 8 9 …
1st code: 0 0 0 0 0 1 1 1 1 0 0 0 0 2 2 2 2 2 2 0 0 0 0 0 2 2 2 2 2 0 0 0 0 0 2 2 2 2 2 0 0…
Weights: 1 1 1 1 1�s s s s 1 1 1 1 p p p p p p 1 1 1 1 1 p p p p p 1 1 1 1 1 p p p p p 1 1…
2nd code: ��

�
��
�

��
� …

Weights: �� � �� …

FIG. 1. A statistical mechanical model of polypeptide
conformation.
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current study, all of our considerations are limited to ho-
mopolypeptides. We also neglect the stereochemical restric-
tions in the real polypeptides, such as the limitation on the
length of loop segment between consecutive parallel �
strands, and the constraint for the length of � strands in the
same � sheets, etc. Furthermore, we ignore the possible en-
ergy difference between the parallel and antiparallel � sheets
too. Despite the possible loss of exactness, these simplifica-
tions can provide some valuable insight into the role of long-
range interactions in the � structure formation and the helix-
sheet transition, and would also be helpful towards a
complete model in the future.

After some tedious computations based on above assump-
tions, the explicit form of S�X� is given by

S�X� = Cna−2la−1
la−1 Cnb−lb−1

lb−1 Clb−kb−1
kb−1 lb!/2

� Cn−na−nb−�	−1��la+lb�+	
la+lb Cla+lb

la 2lb−kb. �3�

The meaning of each term in Eq. �3� is listed below.
�1� The first factor Cna−2la−1

la−1 gives the number of ways to
partition na � residues into la helices, with the restriction that
there are at least three residues in each helix. This term can
be obtained by the classical combinatorics formula �54�. First
of all, we take out 3la residues from the na �-residues in
order to remove the constraint. Then partition the remaining
�na−3la� identical residues into la groups freely �there may
be empty groups�. This process is equivalent to take �la−1�
elements out of �na−3la�+ �la−1� units, which gives the
combination Cna−2la−1

la−1 . Finally, we divide the 3la residues
equally into la helices to make sure that each helix has at
least three residues.

�2� The second term Cnb−lb−1
lb−1 is the number of ways to

partition nb � residues into lb � strands, providing that each
strand has at least two residues. Its derivation is similar to
the one above.

�3� The third term Clb−kb−1
kb−1 lb! /2 represents the number of

ways to arrange lb � strands into kb � sheets, with each �
sheet having at least two strands. The factor lb! /2 counts all
possible permutations of the spatial connecting orders of �
strands. Here, two arrangements with completely opposite
ordering should be considered the same, as they represent the
same spatial conformation.

�4� The factor Cn−na−nb−�	−1��la+lb�+	
la+lb gives the number of

ways to insert �n−na−nb� coil residues between the �la+ lb�
secondary structure elements, so that consecutive elements
are separated by at least 	 coil residues. This term can be
obtained in the same way as the first one. As we can see,
there are �n−na−nb� coil residues to be assigned to either the
�la+ lb−1� inner gaps between the secondary structure ele-
ments or the two ends of the chain. Each inner gap requires
at least 	 coil residues; while the chain ends can be empty.
Similar to the previous method, we firstly take out 	�la+ lb
−1� coil residues to remove the constraint. Then assign the
remaining �n−na−nb−	�la+ lb−1�� residues to the �la+ lb

+1� positions, which gives Cn−na−nb−�	−1��la+lb�+	
la+lb . Finally, we

reinsert the 	�la+ lb−1� residues equally into �la+ lb−1� in-
ner gaps to complete the whole process.

�5� The factor Cla+lb
lb represents the number of ways to

arrange the order of la � helices and lb � strands, which is
given by choosing la � helices from the total �la+ lb� second-
ary structure elements.

�6� The last term 2lb−kb accounts the different connecting
patterns of parallel and antiparallel � sheet. In each � sheet,
when the initial � strand is fixed, the remaining strands can
either parallel or antiparallel the previous one. And this gives
the total 2lb−kb combinations.

According to the chain structure, the partition function in
Eq. �2� can be rewritten as

Z = 1 + Z� + Z� + Z�/�, �4�

where

Z� = �
la=1

n

�la �
na=3la

n

snaCna−2la−1
la−1 Cn−na−�	−1�la+	

la , �5�

Z� = �
kb=1

n

�kb �
lb=2kb

n

�lbClb−kb−1
kb−1 2lb−kblb!/2

� �
nb=2lb

n

pnbCnb−lb−1
lb−1 Cn−nb−�	−1�lb+	

lb , �6�

Z�/� = �
kb=1

n

�kb �
lb=2kb

n

�lbClb−kb−1
kb−1 2lb−kblb!/2

� �
nb=2lb

n

pnbCnb−lb−1
lb−1 �

la=1

n

�laCla+lb

la

� �
na=3la

n

snaCna−2la−1
la−1 Cn−nb−na−�	−1��la+lb�+	

la+lb . �7�

Here we set Cn
m= n!

m!�n−m�! , if n�0, m�0 and n�m; other-
wise, we set Cn

m=0.
In Eq. �4�, Z� represents the partition function for all �

structures �nb=0�, Z� for all � structures �na=0�, and Z�/�
for � /� mixed structures �na ,nb�1�. If no � structure is
presented, we have Z=1+Z�, which is consistent with the
results in the ZB model �5�.

Comparing Eqs. �5� and �6�, we can see that the factor
Clb−kb−1

kb−1 2lb−kblb! /2 is introduced particularly for � structures.
It reveals the entropy from different connective patterns of
arranging � strands into � sheets. This effect is originated
from the long-range interactions and can induce interesting
transitions from the � helix to � sheet �to be detailed later�.

According to statistical mechanics, the average number of
� and � residues are given, respectively, as �5–11�

�na� =
� ln Z

� ln s
=

1

Z
�

X�


naQ�X�S�X� , �8�

�nb� =
� ln Z

� ln p
=

1

Z
�

X�


nbQ�X�S�X� . �9�

The average number of � helices and � strands are
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�la� =
� ln Z

� ln �
=

1

Z
�

X�


laQ�X�S�X� , �10�

�lb� =
� ln Z

� ln �
=

1

Z
�

X�


lbQ�X�S�X� . �11�

Further formulas for na, nb, la, and lb can be obtained directly
from the partial derivatives of Eqs. �4�–�7�. As the detailed
expressions are tedious, they will be omitted here.

IV. RESULTS

From previous discussions, in the absence of the � sheet,
we reobtain the partition function in the ZB model for helix-
coil transtion, which have been extensively studied �5–11�.
In this paper, we will focus on the case with the presence of
� structures, i.e., coil-sheet and helix-sheet transitions. Such
transitions have been observed in many proteins and other
biopolymers �1,2,51–53�.

As we know, there are five parameters in our model. De-
spite the well studied helical parameters, no experimental
values for the � structure parameters are available so far
�55–61�. In this study, we refer to the helical parameters of
the amino acid Leu, which is found to have nearly equal
tendency to form the � helix and � sheet �51,62–64�, with
s=1.14 and �=0.0033. Thus, we will roughly assign p=s
=1.14 and �=�=0.0033, since their physical meanings are
similar: s and p are for interactions on single residue; � and
� are for initiative effect. Here, as the results are insensitive
to � �see Fig. 3 below� and 	 �data not shown�, we will take
�=1, 	=3 in later computations for simplicity.

A. Coil-sheet transition

In this section, we omit the � helix and study the transi-
tion from random coil to the � sheet, thus Z=1+Z�. Now, we
have three tunable parameters p, �, and �. Typical depen-
dence of �nb� and �lb� on these parameters are shown in Fig.
2.

From Figs. 2�a� and 2�c�, we see that the number of �
residues increases from zero to the maximum value of 197
monotonously as p increases. This indicates that as the bond-
ing effect becomes stronger, more coil residues transit to �
residues. When p is large enough, the chain tends to adopt a
conformation of two long � strands, which are connected by
a � turn with 	�=3� residues. The sharpness of transition
depends on the parameters � and �. The smaller � and � are,
the sharper the transition will be.

Unlike the monotonously increasing of the average num-
ber of � residues, the average number of � strands shows a
different dependence on p. It increases first to reach the
maximum at around the transition point �p=1�, and then de-
creases to �lb�=2 as p keeps increasing �Figs. 2�b� and 2�d��.

A notable fact in Fig. 2�a� is that when � is small ��
0.01�, there is only one transition region at around p=1,
which consists with the results in the ZB model for helix-coil
transition. When � is increasing, however, the transition re-
gion will separate into two parts with p1 and p�1, re-
spectively. The underlying mechanisms of these two transi-

tions are different. In the first transition region �p1�, the
average number of � strands increases along with �nb� �Fig.
2�b��. It indicates that the chain prefers to adopt a conforma-
tion with many short � stands in order to gain larger entropy.
The entropy is given by the term Clb−kb−1

kb−1 2lb−kblb! /2 in the
partition function �Eq. �6��. It comes from the multiple ways
of arranging the � strands into � sheets, which is a conse-
quence of the long-range interactions. While in the other
transition region �p�1�, the average number of � strands
decreases quickly to 2. This suggests that when p is large
enough, the bonding effect on a single residue takes over the
entropy contribution. And then, the chain favors the confor-
mation of one � sheet with two long � strands to maximize
the number of � residues. So the presence of two transition
regions is a consequence of the competition between en-
thalpy and entropy effect in protein structure formation, and
is different from the traditional helix-coil transition.

B. Helix-sheet transition

Figure 3 shows the dependences of �na�, �nb�, �la�, �lb�
with respect to the model parameters p, �, and �. We can see
that there is evident transition of the chain conformation
from the � helix to � sheet, when p or � is increasing.

In Fig. 3�a�, the chain transits from the � helix to � sheet,
when the bonding effect p is increasing. The all � structure
and all � structure are well separated. Around the transition
point �p�1.15�, small changes of the parameter p is able to
force a peptide to change from a mostly helical state to a
�-sheet dominated one. This hints that even single mutation
of the amino acid is possible to induce a helix-sheet transi-
tion in natural protein, just as we have seen in A��1−42�
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FIG. 2. �Color online� Coil-sheet transition. The dependence of
the average number of � residues �nb� and the average length of �
strands �lb� on the parameter p, with different values of � or �. In
the �a� and �b�, �=1 and � is changed ��=10−1: red dashed and
dotted line; �=10−2: black dotted line; �=10−3: pink dashed line;
�=10−4: blue solid line�. In �c� and �d�, �=0.0033 and � is changed
��=1: red dashed and dotted line; �=10−2: black dotted line; �
=10−4: pink dashed line; �=10−6: blue solid line�. The length of the
chain is n=200.
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�53�. Further computations show that the sharpness of the
transition depends on the values of � and � �data not shown�.
The smaller � and � are, the sharper the transition will be.
This is similar to the case in sheet-coil transitions.

From Fig. 3�b�, the average number of the � helix de-
creases with respect to p. The average number of � strands
increases in the small p region. When reaching the maximum
value of �lb��5 at p�1.2, it then decreases to �lb�=2 as p is
increasing further. In particular, when p is small, the chain
favors many short � strands; while p becomes larger, the
chain prefers long � strands to maximize the number of �
residues. Thus the average number of � strands decreases
rapidly to 2. As we have pointed out in the case of coil-sheet
transition, the turning point at p�1.2 reveals the critical
value where the enthalpy and entropy effects are exquisitely
balanced by each other.

Figures 3�c� and 3�d� show the transition from � structure
to � structure when the � strand initiation factor � is increas-
ing. The transition is smoother than that caused by the
changes of p. Unlike Fig. 3�b� that shows a turning point at

p�1.2, �lb� in Fig. 3�d� increases monotonously with param-
eter �. This is because the larger �-strand initiation factor
yields larger tendency to form � strands.

In Figs. 3�e� and 3�f�, the transition from � structure to �
structure is slow when the �-sheet initiation factor � is in-
creasing. This result shows that the � sheet initiation factor �
has minor effect on the helix-sheet transition.

V. DISCUSSIONS

In this paper, we have developed a simple statistical me-
chanical model for the helix-sheet-coil transition in generic
homopolypeptide. We introduce a double coding method to
describe the possible conformations of a chain, from which
the partition function of a homopolypeptide is obtained when
neglecting some stereochemical constraints. Though far from
complete, our model has provided some physical insights
about the helix-sheet-coil transition, especially the significant
role of long-range interaction in � structure formation. Our
computations show that the final equilibrium state of a ho-
mopolypeptide chain depends on the exquisite balance be-
tween short-range bonding interactions, long-range interac-
tions, and entropy effects.

We must point out that the results in this study are only
valid for homopolypeptides, and cannot be applied to het-
eropolypeptides directly. For example, Figs. 2 and 3 suggests
that the chain may adopt long � helix or � strands when the
bonding effect is strong enough. However this is not often
seen in natural proteins. Instead the average length of the �
helix in natural proteins is 11, and the length of the � strand
is about 5–6 �52,65�. This is because on the one hand an �
helix �or a � strand� can easily be interrupted by the residues
with low tendency to adopt a helical �or strand� conformation
in nature proteins. On the other hand, the tertiary structure,
that we have neglected, may bring about strong geometrical
constraint on the secondary structure. The long � helix or �
strand are not stable alone for many other interactions, that
are not considered in our model, such as the electronic inter-
action and hydrophobic interaction, etc. �1,2,51�.

As we have pointed out that a comprehensive statistical
mechanical description for the � structure formation is very
difficult. Our current study is an attempt towards such an
aim, although still at the very beginning. Further improve-
ments need to be done before applying to real proteins.
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